Package: pegboard (via r-universe)
August 24, 2024

Title Explore and Manipulate Markdown Curricula from the Carpentries
Version 0.7.6

Description The Carpentries (<https://carpentries.org>) curricula is
made of of lessons that are hosted as websites. Each lesson
represents between a half day to two days of instruction and
contains several episodes, which are written as
'kramdown'-flavored 'markdown' documents and converted to HTML
using the 'Jekyll' static website generator. This package
builds on top of the 'tinkr' package; reads in these markdown
documents to "XML' and stores them in R6 classes for convenient
exploration and manipulation of sections within episodes.

License MIT + file LICENSE
URL https://carpentries.github.io/pegboard

BugReports https://github.com/carpentries/pegboard/issues

Imports commonmark, fs (>= 1.5.0), glue, purrr, R6, tinkr (>= 0.2.0),
xml2, xslt, yaml

Suggests cli (>=0.3.4), covr, crayon, dplyr, gert (>= 1.0.0), here,
knitr, magrittr, rlang, rmarkdown, testthat, withr

VignetteBuilder knitr

Remotes ropensci/tinkr

Additional_repositories https://carpentries.r-universe.dev/
Config/testthat/edition 3

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Repository https://carpentries.r-universe.dev

RemoteUrl https://github.com/carpentries/pegboard

RemoteRef 0.7.6

RemoteSha ad2542f7f7b9¢3f90cc871b355ff81ec14a09ca9

https://carpentries.org
https://carpentries.github.io/pegboard
https://github.com/carpentries/pegboard/issues
https://carpentries.r-universe.dev/

2 collect _labels

Contents
collect_labels e e e e 2
Episode e 3
fix_liquid_relative_link 15
fix_sandpaper_links 16
get_blockso e e e 17
get_challenges. L. 18
GeL_COde e e 19
get_headings 19
get_lesson 20
get_solutions e 21
isolate_elements e e e e e 22
ISSUE_WArNING o oo e e e e 22
Lesson e e 24
lesson_fragment L. L e 32
liquid_to_commonmark 33
make _div_table e e 34
make_pandoc_alt L. 35
set_alt_attr. e e e e 35
throw_heading_warnings 36
trim_fence e 37
validate_divs L e e 38

Index 40

collect_labels Collect and append validation messages
Description

Given a data frame containing the results of validation tests, this will append a column of labels that
describes each failure.

Usage
collect_labels(VAL, cli = FALSE, msg = heading_tests)

Arguments
VAL a data frame containing the results of tests
cli indicator to use the cli package to format warnings
msg a named vector of template messages to provide for each test formatted for the
glue package.
See Also

throw_link_warnings() for details on how this is implemented.

Episode 3

Examples

As an example, consider a data frame where you have observations in rows
and the results of individual tests in columns:
set.seed(2023-11-16)
dat <- data.frame(
name = letters[1:10],
rank = sample(1:3, 10, replace = TRUE),

A = sample(c(TRUE, FALSE), 10, replace = TRUE, prob = c(7, 3)),
B = sample(c(TRUE, FALSE), 10, replace = TRUE, prob = c(7, 3)),
C = sample(c(TRUE, FALSE), 10, replace = TRUE, prob = c(7, 3))
)
dat

you can see what the results of the tests were, but it would be a good
idea to have a lookup table describing what these results mean
dat_tests <- c(
A = "[missing widget]: {name}",
B = "[incorrect rank]: {rank}",
C = "[something else]”
)
collect_labels will create the output you need:
pb <- asNamespace("pegboard”)
res <- pb$collect_labels(dat, msg = dat_tests)
res
writeLines(res$labels)
if (requireNamespace(”cli”, quietly = TRUE)) {
you can also specify cli to TRUE to format with CLI
res <- pb$collect_labels(dat, cli = TRUE, msg = dat_tests)
writeLines(res$labels)

3

Episode Class representing XML source of a Carpentries episode

Description

Wrapper around an xml document to manipulate and inspect Carpentries episodes

Details

The Episode class is a superclass of tinkr::yarn(), which transforms (commonmark-formatted)
Markdown to XML and back again. The extension that the Episode class provides is support for
both Pandoc and kramdown flavours of Markdown.

Read more about this class in vignette("intro-episode”, package = "pegboard"”).

Super class

tinkr::yarn ->Episode

https://pandoc.org
https://kramdown.gettalong.org/

4 Episode

Public fields

children [character] a vector of absolute paths to child files if they exist.
parents [character] a vector of absolute paths to immediate parent files if they exist

build_parents [character] a vector of absolute paths to the final parent files that will trigger this
child file to build

Active bindings

show_problems [list] alist of all the problems that occurred in parsing the episode
headings [xml_nodeset] all headings in the document

links [xml_nodeset] all links (not images) in the document

images [xml_nodeset] all image sources in the document

tags [xml_nodeset] all the kramdown tags from the episode

questions [character] the questions from the episode

keypoints [character] the keypoints from the episode

objectives [character] the objectives from the episode

challenges [xml_nodeset] all the challenges blocks from the episode

solutions [xml_nodeset] all the solutions blocks from the episode

output [xml_nodeset] all the output blocks from the episode

error [xml_nodeset] all the error blocks from the episode

warning [xml_nodeset] all the warning blocks from the episode

code [xml_nodeset] all the code blocks from the episode

name [character] the name of the source file without the path

lesson [character] the path to the lesson where the episode is from
has_children [logical] an indicator of the presence of child files (TRUE) or their absence (FALSE)

has_parents [logical] anindicator of the presence of parent files (TRUE) or their absence (FALSE)

Methods

Public methods:

* Episode$new()

e Episode$confirm_sandpaper()
* Episode$get_blocks()

e Episode$get_images()

* Episode$label_divs()

* Episode$get_divs()

e Episode$get_yaml()

e Episode$use_dovetail()
* Episode$use_sandpaper()
e Episode$remove_error()
* Episode$remove_output()

Episode 5

* Episode$move_objectives()

* Episode$move_keypoints()

* Episode$move_questions()

e Episode$get_challenge_graph()
e Episode$show()

e Episode$head()

* Episode$tail()

* Episode$write()

e Episode$handout ()

* Episode$reset()

e Episode$isolate_blocks()

* Episode$unblock()

* Episode$summary ()

e Episode$validate_headings()
e Episode$validate_divs()

* Episode$validate_links()

* Episode$clone()

Method new(): Create a new Episode

Usage:
Episode$new(
path = NULL,

process_tags = TRUE,
fix_links = TRUE,
fix_liquid = FALSE,
parents = NULL,

)

Arguments:
path [character] path to a markdown episode file on disk

process_tags [logical]if TRUE (default), kramdown tags will be processed into attributes of
the parent nodes. If FALSE, these tags will be treated as text

fix_links [logical] if TRUE (default), links pointing to liquid tags (e.g. {{ page.root }})
and included links (those supplied by a call to {\% import links.md \%}) will be appro-
priately processed as valid links.

fix_liquid [logical]defaults to FALSE, which means data is immediately passed to tinkr::yarn.
If TRUE, all liquid variables in relative links have spaces removed to allow the commonmark
parser to interpret them as links.

parents [list] alist of Episode objects that represent the immediate parents of this child
. arguments passed on to tinkr::yarn and tinkr: :to_xml()

Returns: A new Episode object with extracted XML data

Examples:

Episode

scope <- Episode$new(file.path(lesson_fragment(), "_episodes”, "17-scope.md"))
scope$name

scope$lesson

scope$challenges

Method confirm_sandpaper(): enforce that the episode is a sandpaper episode withtout going
through the conversion steps. The default Episodes from pegboard were assumed to be generated
using Jekyll with kramdown syntax. This is a bit of a kludge to bypass the normal checks for
kramdown syntax and just assume pandoc syntax

Usage:
Episode$confirm_sandpaper()

Method get_blocks(): return all block_quote elements within the Episode

Usage:
Episode$get_blocks(type = NULL, level = 1L)

Arguments:
type the type of block quote in the Jekyll syntax like ".challenge", ".discussion"”, or ".solution"

level the level of the block within the document. Defaults to 1, which represents all of the
block_quotes are not nested within any other block quotes. Increase the nubmer to increase
the level of nesting.

Returns: [xml_nodeset] all the blocks from the episode with the given tag and level.

Examples:

scope <- Episode$new(file.path(lesson_fragment(), "_episodes”, "17-scope.md"))
get all the challenges

scope$get_blocks(”.challenge")

get the solutions

scope$get_blocks(”.solution”, level = 2)

\dontrun{

download the source files for r-novice-gampinder into a Lesson object
rng <- get_lesson("swcarpentry/r-novice-gapminder")
dsp1 <- rng$episodes[["04-data-structures-partl.md"]]
There are 9 blocks in total

dsp1$get_blocks()

One is a callout block

dspl1$get_blocks(".callout")

One is a discussion block
dsp1$get_blocks(".discussion")

Seven are Challenge blocks
dsp1$get_blocks("”.challenge")

There are eight solution blocks:
dspl1$get_blocks("”.solution”, level = 2L)

3

Method get_images(): fetch the image sources and optionally process them for easier parsing.
The default version of this function is equivalent to the active binding $images.

Episode 7

Usage:

Episode$get_images(process = FALSE)

Arguments:

process if TRUE, images will be processed via the internal function process_images(), which
will add the alt attribute, if available and extract img nodes from HTML blocks.

Returns: an xml_nodelist

Examples:

loop <- Episode$new(file.path(lesson_fragment(), "_episodes”, "14-looping-data-sets.md"))
loop$get_images()
loop$get_images(process = TRUE)

Method label_divs(): label all the div elements within the Episode to extract them with
$get_divs()

Usage:

Episode$label_divs()

Method get_divs(): return all div elements within the Episode
Usage:
Episode$get_divs(type = NULL, include = FALSE)
Arguments:

type the type of div tag (e.g. "challenge’ or ’solution’)

include \[logical\] if TRUE, the div tags will be included in the output. Defaults to FALSE,
which will only return the text between the div tags.

Method get_yaml(): Extract the yaml metadata from the episode
Usage:
Episode$get_yaml ()

Method use_dovetail(): Ammend or add a setup code block to use {dovetail}
This will convert your lesson to use the dovetail R package for processing specialized block quotes
which will do two things:
1. convert your lesson from md to Rmd
2. add to your setup chunk the following code
library('dovetail')
source(dvt_opts())

If there is no setup chunk, one will be created. If there is a setup chunk, then the source and
knitr_fig_path calls will be removed.

Usage:

Episode$use_dovetail()

Method use_sandpaper(): Use the sandpaper package for processing

This will convert your lesson to use the { sandpaper} R package for processing the lesson instead
of Jekyll (default). Doing this will have the following effects:

Episode

1. code blocks that were marked with liquid tags (e.g. {: .language-r} are converted to
standard code blocks or Rmarkdown chunks (with language information at the top of the
code block)

2. If rmarkdown is used and the lesson contains python code, library('reticulate') will be
added to the setup chunk of the lesson.

Usage:

Episode$use_sandpaper(rmd = FALSE, yml = list())

Arguments:

rmd if TRUE, lessons will be converted to RMarkdown documents

yml the list derived from the yml file for the episode

Method remove_error(): Remove error blocks

Usage:
Episode$remove_error()

Method remove_output(): Remove output blocks
Usage:
Episode$remove_output ()

Method move_objectives(): move the objectives yaml item to the body
Usage:
Episode$move_objectives()

Method move_keypoints(): move the keypoints yaml item to the body

Usage:
Episode$move_keypoints()

Method move_questions(): move the questions yaml item to the body
Usage:
Episode$move_questions()

Method get_challenge_graph(): Create a graph of the top-level elements for the challenges.
Usage:
Episode$get_challenge_graph(recurse = TRUE)
Arguments:
recurse if TRUE (default), the content of the solutions will be included in the graph; FALSE will
keep the solutions as block_quote elements.
Returns: a data frame with four columns representing all the elements within the challenges in
the Episode:
* Block: The sequential number of the challenge block
* from: the inward elements
* to: the outward elements
* pos: the position in the markdown document
Note that there are three special node names:

Episode 9

* challenge: start or end of the challenge block
¢ solution: start of the solution block
* lesson: start of the lesson block

Examples:
scope <- Episode$new(file.path(lesson_fragment(), "_episodes”, "17-scope.md"))
scope$get_challenge_graph()

Method show(): show the markdown contents on the screen

Usage:
Episode$show()

Returns: a character vector with one line for each line of output

Examples:
scope <- Episode$new(file.path(lesson_fragment(), "_episodes”, "17-scope.md"))
scope$head()
scope$tail()
scope$show()
Method head(): show the first n lines of markdown contents on the screen
Usage:
Episode$head(n = 6L)
Arguments:

n the number of lines to show from the top

Returns: a character vector with one line for each line of output

Method tail(): show the first n lines of markdown contents on the screen

Usage:

Episode$tail(n = 6L)

Arguments:

n the number of lines to show from the top

Returns: a character vector with one line for each line of output

Method write(): write the episode to disk as markdown

Usage:
Episode$write(path = NULL, format = "md"”, edit = FALSE)

Arguments:

path the path to write your file to. Defaults to an empty directory in your temporary folder

format one of "md" (default) or "xml". This will create a file with the correct extension in the
path

edit if TRUE, the file will open in an editor. Defaults to FALSE.

Returns: the episode object

Examples:

Episode

scope <- Episode$new(file.path(lesson_fragment(), "_episodes”, "17-scope.md"))
scope$write()

Method handout(): Create a trimmed-down RMarkdown document that strips prose and con-
tains only important code chunks and challenge blocks without solutions.

Usage:

Episode$handout(path = NULL, solutions = FALSE)

Arguments:

path (handout) a path to an R Markdown file to write. If this is NULL, no file will be written
and the lines of the output will be returned.

solutions if TRUE, include solutions in the output. Defaults to FALSE, which removes the
solution blocks.

Returns: a character vector if path = NULL, otherwise, it is called for the side effect of creating
a file.
Examples:

1sn <- Lesson$new(lesson_fragment("sandpaper-fragment”), jekyll = FALSE)
e <- lsn$episodes[[1]]

cat(e$handout())

cat(e$handout (solution = TRUE))

Method reset(): Re-read episode from disk

Usage:
Episode$reset()

Returns: the episode object

Examples:

scope <- Episode$new(file.path(lesson_fragment(), "_episodes”, "17-scope.md"))
xml2::xml_text(scope$tags[1])

xml2::xml_set_text(scope$tags[1], "{: .code}")

xml2::xml_text(scope$tags[1])

scope$reset()

xml2::xml_text(scope$tags[1])

Method isolate_blocks(): Remove all elements except for those within block quotes that
have a kramdown tag. Note that this is a destructive process.

Usage:
Episode$isolate_blocks()

Returns: the Episode object, invisibly

Examples:
scope <- Episode$new(file.path(lesson_fragment(), "_episodes”, "17-scope.md"))
scope$body # a full document with block quotes and code blocks, etc
scope$isolate_blocks()$body # only one challenge block_quote

Method unblock(): convert challenge blocks to roxygen-like code blocks
Usage:

Episode

11

Episode$unblock(token = "#'", force = FALSE)

Arguments:

token the token to use to indicate non-code, Defaults to "#"

force force the conversion even if the conversion has already taken place

Returns: the Episode object, invisibly

Examples:

loop <- Episode$new(file.path(lesson_fragment(), "_episodes”, "14-looping-data-sets.md"))
loop$body # a full document with block quotes and code blocks, etc

loop$get_blocks() # all the blocks in the episode

loop$unblock()

loop$get_blocks() # no blocks

loop$code # now there are two blocks with challenge tags

Method summary(): Get a high-level summary of the elements in the episode

Usage:

Episode$summary ()

Returns: a data frame with counts of the following elements per page:

sections: level 2 headings
headings: all headings
callouts: all callouts
challenges: subset of callouts
solutions: subset of callouts

code: all code block elements (excluding inline code)

output: subset of code that is displayed as output

warnining: subset of code that is displayed as a warning

error: subset of code that is displayed as an error

images: all images in markdown or HTML
links: all links in markdown or HTML

Method validate_headings(): perform validation on headings in a document.

This will validate the following aspects of all headings:

* first heading starts at level 2 (first_heading_is_second_level)

greater than level 1 (greater_than_first_level)

increse sequentially (e.g. no jumps from 2 to 4) (are_sequential)

have names (have_names)

unique in their own hierarchy (are_unique)

Usage:

Episode$validate_headings(verbose

Arguments:

TRUE, warn = TRUE)

verbose if TRUE (default), a message for each rule broken will be issued to the stderr. if FALSE,

this will be silent.

warn if TRUE (default), a warning will be issued if there are any failures in the tests.

12

Episode

Returns: a data frame with a variable number of rows and the follwoing columns:

episode the filename of the episode

heading the text from a heading

level the heading level

pos the position of the heading in the document
node the XML node that represents the heading
(the next five columns are the tests listed above)
path the path to the file.

Each row in the data frame represents an individual heading across the Lesson. See validate_headings()
for more details.

Examples:

Example: There are multiple headings called "Solution” that are not
nested within a higher-level heading and will throw an error

loop <- Episode$new(file.path(lesson_fragment(),

loop$validate_headings()

n

_episodes”, "14-looping-data-sets.md"))

Method validate_divs(): perform validation on divs in a document.

This will validate the following aspects of divs. See validate_divs() for details.

* divs are of a known type (is_known)

Usage:
Episode$validate_divs(warn = TRUE)

Arguments:

warn if TRUE (default), a warning message will be if there are any divs determined to be invalid.

Set to FALSE if you want the table for processing later.

Returns: alogical TRUE for valid divs and FALSE for invalid divs.

Examples:

loop <- Episode$new(file.path(lesson_fragment(), "_episodes”, "14-looping-data-sets.md"))
loop$validate_divs()

Method validate_links(): perform validation on links and images in a document.

This will validate the following aspects of links. See validate_links() for details.
¢ External links use HTTPS (enforce_https)

Internal links exist (internal_okay)

External links are reachable (all_reachable) (planned)

Images have alt text (img_alt_text)
Link text is descriptive (descriptive)

» Link text is more than a single letter (Link_length)

Usage:
Episode$validate_links(warn = TRUE)

Arguments:

warn if TRUE (default), a warning message will be if there are any links determined to be invalid.

Set to FALSE if you want the table for processing later.

Episode 13

Returns: alogical TRUE for valid links and FALSE for invalid links.
Examples:
loop <- Episode$new(file.path(lesson_fragment(), "_episodes”, "14-looping-data-sets.md"))
loop$validate_links()
Method clone(): The objects of this class are cloneable with this method.
Usage:
Episode$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Note

The current XLST spec for tinkr does not support kramdown, which the Carpentries Episodes are
styled with, thus some block tags will be destructively modified in the conversion.

Examples
Y m o m
Method “Episode$new”
H m o
scope <- Episode$new(file.path(lesson_fragment(), "_episodes”, "17-scope.md”))
scope$name
scope$lesson
scope$challenges
e e
Method “Episode$get_blocks™
B m o
scope <- Episode$new(file.path(lesson_fragment(), "_episodes”, "17-scope.md”))

get all the challenges
scope$get_blocks(".challenge")

get the solutions
scope$get_blocks("”.solution”, level = 2)
Not run:

download the source files for r-novice-gampinder into a Lesson object
rng <- get_lesson("swcarpentry/r-novice-gapminder")
dsp1 <- rng$episodes[["@4-data-structures-partl.md"]1]
There are 9 blocks in total

dsp1$get_blocks()

One is a callout block

dsp1$get_blocks("”.callout")

One is a discussion block
dsp1$get_blocks("”.discussion")

Seven are Challenge blocks
dsp1$get_blocks(".challenge")

There are eight solution blocks:

Episode

dsp1$get_blocks("”.solution”, level = 2L)
End(Not run)

e
Method “Episode$get_images"”
H m o

loop <- Episode$new(file.path(lesson_fragment(), "_episodes”, "14-looping-data-sets.md"))
loop$get_images()
loop$get_images(process = TRUE)

Y m o m
Method “Episode$get_challenge_graph”

B m o

scope <- Episode$new(file.path(lesson_fragment(), "_episodes”, "17-scope.md”))

scope$get_challenge_graph()

oo
Method “Episode$show™

B — oo

scope <- Episode$new(file.path(lesson_fragment(), "_episodes”, "17-scope.md”))
scope$head()

scope$tail()

scope$show()

B oo

Method “Episode$write”

HHE mm

scope <- Episode$new(file.path(lesson_fragment(), "_episodes”, "17-scope.md”))
scope$write()

B o

Method ~Episode$handout”

B oo

lsn <- Lesson$new(lesson_fragment("sandpaper-fragment”), jekyll = FALSE)
e <- lsn$episodes[[1]]

cat(e$handout())

cat(e$handout(solution = TRUE))

H m o
Method “Episode$reset”

H m o

scope <- Episode$new(file.path(lesson_fragment(), "_episodes”, "17-scope.md”))

xml2::xml_text(scope$tags[1])
xml2::xml_set_text(scope$tags[1], "{: .code}")
xml2::xml_text(scope$tags[1])

fix_liquid_relative_link 15

scope$reset()
xml2::xml_text(scope$tags[1])

e e
Method “Episode$isolate_blocks™

B oo

scope <- Episode$new(file.path(lesson_fragment(), "_episodes”, "17-scope.md”))

scope$body # a full document with block quotes and code blocks, etc
scope$isolate_blocks()$body # only one challenge block_quote

et
Method “Episode$unblock”
o

loop <- Episode$new(file.path(lesson_fragment(), "_episodes”, "14-looping-data-sets.md"))
loop$body # a full document with block quotes and code blocks, etc

loop$get_blocks() # all the blocks in the episode

loop$unblock()

loop$get_blocks() # no blocks

loop$code # now there are two blocks with challenge tags

B e
Method “Episode$validate_headings™
H m o

Example: There are multiple headings called "Solution” that are not

nested within a higher-level heading and will throw an error

loop <- Episode$new(file.path(lesson_fragment(), "_episodes"”, "14-looping-data-sets.md"))
loop$validate_headings()

o
Method “Episode$validate_divs~
H m o

loop <- Episode$new(file.path(lesson_fragment(), "_episodes”, "14-looping-data-sets.md"))
loop$validate_divs()

B oo
Method “Episode$validate_links®
B oo

loop <- Episode$new(file.path(lesson_fragment(), "_episodes”, "14-looping-data-sets.md"))
loop$validate_links()

fix_liquid_relative_link
Remove spaces in relative links with liquid variables

16 fix_sandpaper_links

Description

Liquid has a syntax that wraps variables in double moustache braces that may or may not have
spaces within the moustaches. For example, to get the link of the page root, you would use page.root
to make it more readable. However, this violates the expectation of the commonmark parser and
makes it think “oh, this is just ordinary text”.

Usage

fix_liquid_relative_link(path, encoding = "UTF-8")

Arguments

path path to an MD file

encoding encoding of the text, defaults to UTF-8
Details

This function fixes the issue by removing the spaces within the braces.

fix_sandpaper_links Fix relative and jekyll links to be compatible with sandpaper

Description

This function will perform the transformation on three node types:

Usage
fix_sandpaper_links(body, yml = list(), path = NULL, known = NULL)

Arguments
body an XML document
yml the list of key/value pairs derived from the _config.yml file
path the path to the current episode
known a character vector of known episodes in the lesson, relative to the lesson root.
Details
* image
e link

¢ html node

"

The transformation will be to remove relative paths ("../") and replace Jekyll templating (e.g.
page.root " and " site.swc_pages " with either nothing or the link to software carpentry, respectively.

get_blocks 17

Value

the body, invisibly

Note

This is absolutely NOT comprehensive and some links will fail to be converted. If this happens,
please report an issue: https://github.com/carpentries/pegboard/issues/new/

Examples

n

loop <- fs::path(lesson_fragment(), "_episodes”, "14-looping-data-sets.md")
e <- Episode$new(loop)

pegboard: : :make_link_table(e)$orig

e$use_sandpaper ()

pegboard: : :make_link_table(e)$orig

get_blocks Gather blocks from the XML body of a carpentries lesson

Description

This will search an XML document for block_quotes with the specified type and level and extract
them into a nodeset.

Usage
get_blocks(body, type = NULL, level = @)

Arguments
body the XML body of a carpentries lesson (an xml2 object)
type the type of block quote in the Jekyll syntax like ".challenge", ".discussion", or
".solution"
level the level of the block within the document. Defaults to 1, which represents all
of the block_quotes are not nested within any other block quotes. Increase the
nubmer to increase the level of nesting.
Value

an xml nodeset object with each element representing a blockquote that matched the input criteria.

Note

At the moment, blocks are returned at the specified level. If you select type = ".solution”, level =1,
you will receive blocks that contain solution blocks even though these blocks are almost always
nested within other blocks.

https://github.com/carpentries/pegboard/issues/new/

18 get_challenges

Examples

frg <- Lesson$new(lesson_fragment())
Find all the blocks in the
get_blocks(frg$episodes[["17-scope.md"]]$body)

get_challenges Gather challenges from the XML body of a carpentries lesson

Description

This will search an XML document for a challenge marker and extract all of the block quotes that
are ancestral to that marker so that we can extract the challenge blockquotes from the carpentries
lessons.

Usage

get_challenges(body, type = c("block”, "div", "chunk"))

Arguments
body the XML body of a carpentries lesson (an xml2 object)
type the type of element containing the challenges "block" is the default and will
search for all of the blockquotes with liquid/kramdown markup, "div" will search
for all div tags with class of challenge, and "chunk" will search for all of code
chunks with the engine of challenge.
Value

an xml object.

Examples

n

loop <- Episode$new(file.path(lesson_fragment(), "_episodes”, "14-looping-data-sets.md"))
get_challenges(loop$body, "block”)

get_challenges(loop$unblock()$body, "div")

loop$reset()

get_challenges(loop$use_dovetail ()$unblock()$body, "chunk")

get_code 19

get_code Get code blocks from xml document

Description

Get code blocks from xml document

Usage
get_code(body, type = ".language-", attr = "@ktag")
Arguments
body an xml document from a jekyll site
type a full or partial string of a code block attribute from Jekyll without parenthesis.
attr what attribute to query in search of code blocks. Default is @ktag, which will
search for "{: \<type\>".
Details

This uses the XPath function fn:starts-with() to search for the code block and automatically
includes the opening brace, so regular expressions are not allowed. This is used by the $code,
$output, and $error elements of the Episode class.

Value

an xml nodeset object

Examples

e <- Episode$new(fs::path(lesson_fragment(), "_episodes”, "17-scope.md"))

get_code(e$body)
get_code(e$body, ".output”)
get_code(e$body, ".error")

get_headings Get all headings in the XML document

Description

Get all headings in the XML document

20 get_lesson

Usage
get_headings(body)

show_heading_tree(tree)

Arguments

body an XML document

tree a data frame produced via validate_headings()
Value

an object of class xml_nodeset with all the headings in the document.

get_lesson Get a carpentries lesson in XML format

Description

Download and extract a carpentries lesson in XML format. This uses gert: :git_clone() to down-
load a carpentries lesson to your computer (defaults to the temporary directory and extracts the
lesson in _episodes/ using tinkr::to_xml()

Usage
get_lesson(lesson = NULL, path = tempdir(), overwrite = FALSE, ...)
Arguments
lesson a github user/repo pattern to point to the lesson
path a directory to write the lesson to
overwrite if the path exists, setting this to TRUE will overwrite the path, otherwise, the
contents of the path will be returned if it is a lesson repository.
arguments passed on to Episode$new().
Value

a list of xml objects, one element per episode.

Examples

if (interactive()) {
png <- get_lesson("swcarpentry/python-novice-gapminder")
str(png, max.level = 1)

3

get_solutions 21

get_solutions Gather solutions from the XML body of a carpentries lesson

Description

This will search an XML document for a solution marker and extract all of the block quotes that are
ancestral to that marker so that we can extract the solution blockquotes from the carpentries lessons.

Usage

get_solutions(body, type = c("block”, "div", "chunk”), parent = NULL)

Arguments
body the XML body of a carpentries lesson (an xml2 object)
type the type of element containing the solutions "block" is the default and will search
for all of the blockquotes with liquid/kramdown markup, "div" will search for
all div tags with class of solution, and "chunk" will search for all of code chunks
with the engine of solution.
parent the outer block containing the solution. Default is a challenge block, but it could
also be a discussion block.
Value

* type = "block" (default) an xml nodelist of blockquotes
* type = "div" a list of xml nodelists

* type = "chunk" an xml nodelist of code blocks

Note
* the parent parameter is only valid for the "block" (default) type
¢ the "chunk" type has the limitation that solutions are embedded within their respective blocks,
so counting the number of solution elements via this method may an undercount
Examples

loop <- Episode$new(file.path(lesson_fragment(), "_episodes”, "14-looping-data-sets.md"))
get_solutions(loop$body, "block™)

get_solutions(loop$unblock()$body, "div")

loop$reset()

get_solutions(loop$use_dovetail () $unblock()$body, "chunk")

22 issue_warning

isolate_elements Isolate elements in an XML document by source position

Description

Isolate elements in an XML document by source position

Usage
isolate_elements(body, ...)
Arguments
body an XML document
objects of class xml_node or xml_nodeset to be retained
Value

This works by side-effect, but it returns the body, invisibly.

issue_warning Issue a warning via CLI if it exists or send a message

Description

This allows us to control the messages emitted and continue to keep CLI as a suggested package.

Usage

issue_warning(
msg = NULL,
cli = has_cli(),
what = NULL,
url = NULL,
n = NULL,
N = NULL,

infos = list(),
reports = list(),

)
pb_message(..., domain = NULL, appendLF = TRUE)

line_report(msg = "", path, pos, sep = "\t", type = "warning")

issue_warning 23

append_labels(l, i = TRUE, e = "", cli = FALSE, f = "style_inverse")

message_muffler(expr, keep = FALSE)

Arguments

msg the message as a glue or CLI string. Defaults to NULL

cli if TRUE, stylizes e with f

what the name of the specific element to report in an error

url a url for extra information to help.

n the number of elements errored

N the number total elements

infos the information about the errors to be shown to the user

reports the reported errors.
named arguments to be evaluated in the message via glue or CLI

domain see gettext. If NA, messages will not be translated, see also the note in stop.

appendLF logical: should messages given as a character string have a newline appended?

path path to the file to report

pos position of the error

sep a character to use to separate the human message and the line number

type (used in the context of CI only) the type of warning that should be thrown (de-
faults to warning)

1 a vector/list of characters

i the index of elements to append

e the new element to append to each element

f a function from cli that will transform e

expr an R expression.

keep if TRUE, the messages are kept in a list. Defautls to FALSE where cli message are
discarded.

Details

The vast majority of the code in this function is copied directly from the message () function.

Value
nothing, invisibly; used for side-effect
, 1, appended

if keep = FALSE, the output of expr, if keep = TRUE, a list with the elements val = expr and msg = <cliMessage>s

24 Lesson

Examples

pegboard: : :pb_message("hello")
x <- letters[1:5]
x2 <- pegboard:: :append_labels(x,

c(1, 3),

"appended”,

cli = requireNamespace("”cli”, quietly = TRUE),
f = "col_cyan”

)

writeLines(glue::glue("[{x}]1->[{x2}1"))

pegboard: : :message_muffler({
cli::cli_text("hello there! I'm staying in!")
pegboard: : :pb_message("normal looking message that's not getting through")
message("this message makes it out!")
runif(1)

»

pegboard: : :message_muffler({
cli::cli_text("hello there! I'm staying in!")
pegboard: : :pb_message("normal looking message that's not getting through")
message("this message makes it out!"”)
runif (1)

}, keep = TRUE)

Lesson Class to contain a single Lesson by the Carpentries

Description

This is a wrapper for several Episode class objects.

Details
This class contains and keeps track of relationships between Episode objects contained within Car-
pentries Workbench and Carpentries styles lessons.

Read more about how to use this class in vignette("intro-lesson”, package = "pegboard”)

Public fields

path [character] path to Lesson directory
episodes [list] list of Episode class objects representing the episodes of the lesson.

built [list] list of Episode class objects representing the markdown artefacts rendered from
RMarkdown files.

extra [list] list of Episode class objects representing the extra markdown components including
index, setup, information for learners, information for instructors, and learner profiles. This is
not processed for the jekyll lessons.

children [list] list of Episode class objects representing child files that are needed by any of the
components to be built This is not processed for the jekyll lessons.

https://carpentries.github.io/workbench
https://carpentries.github.io/workbench
https://carpentries.github.io/lesson-example

Lesson 25

sandpaper [logical] when TRUE, the episodes in the lesson are written in pandoc flavoured mark-
down. FALSE would indicate a jekyll-based lesson written in kramdown.

rmd [logical] when TRUE, the episodes represent RMarkdown files, default is FALSE for markdown
files (deprecated and unused).

overview [logical] when TRUE, the lesson is an overview lesson and does not necessarly contain
any episodes. Defaults to FALSE

Active bindings

n_problems number of problems per episode
show_problems contents of the problems per episode
files the source files for each episode

has_children alogical indicating the presence (TRUE) or absence (FALSE) of child files within the
main files of the lesson

Methods
Public methods:

e Lesson$new()

* Lesson$load_built()

* Lesson$get()

* Lesson$summary()

* Lesson$blocks()

* Lesson$challenges()

e Lesson$solutions()

e Lesson$thin()

* Lesson$reset()

¢ Lesson$isolate_blocks()
¢ Lesson$handout ()

* Lesson$validate_headings()
¢ Lesson$validate_divs()
e Lesson$validate_links()
* Lesson$trace_lineage()
e Lesson$clone()

Method new(): create a new Lesson object from a directory

Usage:
Lesson$new(path = ".", rmd = FALSE, jekyll = TRUE, ...)

Arguments:

path [character] path to a lesson directory. This must have a folder called _episodes within
that contains markdown episodes. Defaults to the current working directory.

rmd [logical] when TRUE, the imported files will be the source RMarkdown files. Defaults to
FALSE, which reads the rendered markdown files.

26

Lesson

jekyll [logical] when TRUE (default), the structure of the lesson is assumed to be derived
from the carpentries/styles repository. When FALSE, The structure is assumed to be a sand-
paper lesson and extra content for learners, instructors, and profiles will be populated.

. arguments passed on to Episode$new
Returns: anew Lesson object that contains a list of Episode objects in $episodes

Examples:

frg <- Lesson$new(lesson_fragment())
frg$path
frg$episodes

Method load_built(): read in the markdown content generated from RMarkdown sources and
load load them into memory

Usage:
Lesson$load_built()

Method get(): A getter for various active bindings in the Episode class of objects. In practice
this is syntactic sugar around purrr: :map(l$episodes, ~.x$element)

Usage:

Lesson$get(element = NULL, collection = "episodes”)

Arguments:

element [character] a defined element from the active bindings in the Episode class. Defaults
to NULL, which will return nothing. Elements that do not exist in the Episode class will
return NULL

collection [character] one or more of "episodes” (default), "extra", or "built". Select TRUE
to collect information from all files.
Examples:

frg <- Lesson$new(lesson_fragment())
frg$get("error”) # error code blocks
frg$get("links") # links

Method summary(): summary of element counts in each episode. This can be useful for assess-
ing a broad overview of the lesson dynamics

Usage:
Lesson$summary(collection = "episodes”)
Arguments:

collection [character] one or more of "episodes" (default), "extra", or "built". Select TRUE
to collect information from all files.

Examples:

frg <- Lesson$new(lesson_fragment())
frg$summary() # episode summary (default)
Method blocks(): Gather all of the blocks from the lesson in a list of xml_nodeset objects

Usage:
Lesson$blocks(type = NULL, level = @, path = FALSE)

Lesson 27

Arguments:
type the type of block quote in the Jekyll syntax like ".challenge", ".discussion”, or ".solution"

level the level of the block within the document. Defaults to @, which represents all of the
block_quotes within the document regardless of nesting level.

path [logical] if TRUE, the names of each element will be equivalent to the path. The default
is FALSE, which gives the name of each episode.

body the XML body of a carpentries lesson (an xml2 object)

Method challenges(): Gather all of the challenges from the lesson in a list of xml_nodeset
objects

Usage:
Lesson$challenges(path = FALSE, graph = FALSE, recurse = TRUE)
Arguments:

path [logical] if TRUE, the names of each element will be equivalent to the path. The default
is FALSE, which gives the name of each episode.

graph [logical] if TRUE, the output will be a data frame representing the directed graph of
elements within the challenges. See the get_challenge_graph() method in Episode.

recurse [logical] when graph = TRUE, this will include the solutions in the output. See
Episode for more details.

Method solutions(): Gather all of the solutions from the lesson in a list of xml_nodeset objects
Usage:
Lesson$solutions(path = FALSE)
Arguments:

path [logical] if TRUE, the names of each element will be equivalent to the path. The default
is FALSE, which gives the name of each episode.
Method thin(): Remove episodes that have no challenges

Usage:
Lesson$thin(verbose = TRUE)

Arguments:

verbose [logical] if TRUE (default), the names of each episode removed is reported. Set to
FALSE to remove this behavior.

Returns: the Lesson object, invisibly

Examples:

frg <- Lesson$new(lesson_fragment())
frg$thin()
Method reset(): Re-read all Episodes from disk

Usage:
Lesson$reset()

Returns: the Lesson object

Examples:

28

Lesson

frg <- Lesson$new(lesson_fragment())
frg$episodes[[1]1]$body
frg$isolate_blocks()$episodes[[1]]$body # empty
frg$reset()$episodes[[1]1]1$body # reset

Method isolate_blocks(): Remove all elements except for those within block quotes that
have a kramdown tag. Note that this is a destructive process.

Usage:

Lesson$isolate_blocks()

Returns: the Episode object, invisibly

Examples:

frg <- Lesson$new(lesson_fragment())
frg$isolate_blocks()$body # only one challenge block_quote

Method handout(): create a handout for all episodes in the lesson
Usage:
Lesson$handout(path = NULL, solution = FALSE)
Arguments:

path the path to the R Markdown file to be written. If NULL (default), no file will be written and
the lines of the output document will be returned.

solution if TRUE solutions will be retained. Defaults to FALSE
Returns: if path = NULL, a character vector, otherwise, the object itself is returned.

Examples:

lsn <- Lesson$new(lesson_fragment("sandpaper-fragment”), jekyll = FALSE)
cat(lsn$handout())
cat(lsn$handout(solution = TRUE))

Method validate_headings(): Validate that the heading elements meet minimum accessibility
requirements. See the internal validate_headings() for deails.

This will validate the following aspects of all headings:
* first heading starts at level 2 (first_heading_is_second_level)
* greater than level 1 (greater_than_first_level)
* increse sequentially (e.g. no jumps from 2 to 4) (are_sequential)
* have names (have_names)
* unique in their own hierarchy (are_unique)
Usage:
Lesson$validate_headings(verbose = TRUE)
Arguments:
verbose if TRUE, the heading tree will be printed to the console with any warnings assocated
with the validators
Returns: a data frame with a variable number of rows and the follwoing columns:
* episode the filename of the episode
¢ heading the text from a heading

Lesson 29

level the heading level
¢ pos the position of the heading in the document
* node the XML node that represents the heading
¢ (the next five columns are the tests listed above)
* path the path to the file.
Each row in the data frame represents an individual heading across the Lesson. See validate_headings()
for more details.
Examples:

frg <- Lesson$new(lesson_fragment())
frg$validate_headings()

Method validate_divs(): Validate that the divs are known. See the internal validate_divs()
for details.
Validation variables:

¢ divs are known (is_known)

Usage:
Lesson$validate_divs()

Arguments:
verbose if TRUE (default), Any failed tests will be printed to the console as a message giving
information of where in the document the failing divs appear.

Returns: a wide data frame with five rows and the number of columns equal to the number
of episodes in the lesson with an extra column indicating the type of validation. See the same
method in the Episode class for details.

Examples:

frg <- Lesson$new(lesson_fragment())
frg$validate_divs()

Method validate_links(): Validate that the links and images are valid and accessible. See
the internal validate_links() for details.
Validation variables:
¢ External links use HTTPS (enforce_https)
e Internal links exist (internal_okay)
» External links are reachable (all_reachable) (planned)
* Images have alt text (img_alt_text)
* Link text is descriptive (descriptive)
» Link text is more than a single letter (link_length)

Usage:
Lesson$validate_links()
Arguments:

verbose if TRUE (default), Any failed tests will be printed to the console as a message giving
information of where in the document the failing links/images appear.

30

Lesson

Returns: a wide data frame with five rows and the number of columns equal to the number
of episodes in the lesson with an extra column indicating the type of validation. See the same

method in the Episode class for details.

Examples:

frg <- Lesson$new(lesson_fragment())
frg$validate_links()

Method trace_lineage(): find all the children of a single source file

Usage:
Lesson$trace_lineage(episode_path)

Arguments:

episode_path the path to an episode or extra file

Returns: a character vector of the full lineage of files starting with a single source file. Note:
this assumes a sandpaper lesson that has child files. If there are no child files, it will return the

path

Examples:

frag <- lesson_fragment("sandpaper-fragment-with-child")

1sn <- Lesson$new(frag, jekyll = FALSE)

1sn$has_children # TRUE

1sn$episodes[[1]]$children # first episode shows 1 immediate child
lsn$trace_lineage(lsn$files[[1]1]) # find recursive children of 1st episode

Method clone(): The objects of this class are cloneable with this method.
Usage:
Lesson$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

o
Method ~Lesson$new”
B oo

frg <- Lesson$new(lesson_fragment())

frg$path

frg$episodes

B oo
Method ~Lesson$get”

B oo

frg <- Lesson$new(lesson_fragment())
frg$get("error”) # error code blocks
frg$get(”"links”) # links

Lesson

Method ~Lesson$summary”
B o

frg <- Lesson$new(lesson_fragment())
frg$summary() # episode summary (default)

oo
Method ~Lesson$thin”
B m o

frg <- Lesson$new(lesson_fragment())
frg$thin()

Y m o m
Method ~Lesson$reset”
B m o

frg <- Lesson$new(lesson_fragment())
frg$episodes[[1]]$body
frg$isolate_blocks()$episodes[[1]1]$body # empty
frg$reset()$episodes[[1]1]$body # reset

B e
Method ~Lesson$isolate_blocks™
oo

frg <- Lesson$new(lesson_fragment())
frg$isolate_blocks()$body # only one challenge block_quote

B oo
Method ~Lesson$handout™
HHE mm

1sn <- Lesson$new(lesson_fragment("sandpaper-fragment”), jekyll = FALSE)
cat(1lsn$handout())
cat(lsn$handout(solution = TRUE))

B m oo
Method "Lesson$validate_headings~
oo

frg <- Lesson$new(lesson_fragment())
frg$validate_headings()

B oo
Method ~Lesson$validate_divs”
B oo

frg <- Lesson$new(lesson_fragment())
frg$validate_divs()

e e
Method ~Lesson$validate_links~”

32

lesson_fragment

frg <- Lesson$new(lesson_fragment())
frg$validate_links()

oo
Method ~Lesson$trace_lineage”
B o

frag <- lesson_fragment("sandpaper-fragment-with-child")

lsn <- Lesson$new(frag, jekyll = FALSE)

lsn$has_children # TRUE

lsn$episodes[[1]]$children # first episode shows 1 immediate child
lsn$trace_lineage(lsn$files[[1]1]) # find recursive children of 1st episode

lesson_fragment Example Lesson Fragments

Description

Partial lessons mainly used for testing and demonstration purposes

Usage
lesson_fragment(name = "lesson-fragment")
Arguments
name the name of the lesson fragment. Can be one of:
* lesson-fragment
¢ rmd-lesson
* sandpaper-fragment
* sandpaper-fragment with child
Value

a path to a lesson fragment whose contents are:

lesson-fragment contains one _episodes directory with three files: "10-lunch.md", "14-
looping-data-sets.md", and "17-scope.md"

rmd-fragment contains one episode under _episodes_rmd called @1-test.Rmd.

sandpaper-fragment contains a trimmed-down Workbench lesson that has its R Markdown
content pre-built

sandpaper-fragment-with-child contains much of the same content as sandpaper-fragment,
but the episodes/index.Rmd file references child documents.

liquid_to_commonmark 33

Note

The lesson-fragment example was taken from the python novice gapminder lesson

Examples

lesson_fragment ()

lesson_fragment("rmd-lesson")
lesson_fragment("sandpaper-fragment”)
lesson_fragment("sandpaper-fragment-with-child")

liquid_to_commonmark Convert liquid code blocks to commonmark code blocks

Description

Liquid code blocks are generally codified by

Usage

liquid_to_commonmark(block, make_rmd = FALSE)

Arguments
block a code block
make_rmd if TRUE, the language will be wrapped in curly braces to be evaluated by RMark-
down
Details

print(”"code goes " + "here")
: language-python

However, there is a simpler syntax that we can use:

print(”"code goes " + "here")

This will take in a code block and convert it so that it will no longer use the liquid tag (which we
have added as a "ktag" attribute for "kramdown" tag)

Value

the node, invisibly.

34

Examples

frgl <- Lesson$new(lesson_fragment())

frg2 <- frgl$clone(deep = TRUE)

pyl <- get_code(frgl$episodes[["17-scope.md"]]$body, ".language")
py2 <- get_code(frg2$episodes[["17-scope.md"]]$body, ".language")
py1

invisible(lapply(py1, liquid_to_commonmark, make_rmd = FALSE))
invisible(lapply(py2, liquid_to_commonmark, make_rmd = TRUE))

py1

py2

make_div_table

make_div_table Create a table of divs in an episode

Description

Create a table of divs in an episode

Usage

make_div_table(yrn)

Arguments

yrn a tinkr::yarn or Episode object.

Value

a data frame with the following columns:

* path: path to the file, relative to the lesson

* div: the type of div

pb_label: the label of the div

¢ line: the line number of the div label

make_pandoc_alt 35

make_pandoc_alt Add alt text to images when transforming from jekyll to sandpaper

Description

Add alt text to images when transforming from jekyll to sandpaper

Usage

make_pandoc_alt(images)

Arguments

images a xml_nodeset of image nodes

Value

the images, invisibly with a new alt attribute and text removed

set_alt_attr Set the alt text for a nodeset of images

Description
This finds the attribute curly braces after an image declaration, extracts the alt text, and adds it as
an attribute to the image, which is useful in parsing the XML, and will not affect rendering.

Usage

set_alt_attr(images, xpath, ns)

Arguments
images a nodeset of images
xpath an XPath expression that finds the first curly brace immediately after a node.
ns the namespace of the XML

Value

the nodeset, invisibly.

Note

this function assumes that the images entering have a curly brace following.

36

throw_heading_warnings

throw_heading_warnings

Throw a validation report as a single message

Description

Collapse a variable number of validation reports into a single message that can be formatted for the
CLI or GitHub.

Usage

throw_heading_warnings(VAL)
throw_div_warnings(VAL)

throw_link_warnings(VAL)

Arguments

VAL [data.frame] a validation report derived from one of the validate functions.

Details

One of the key features of pegboard is the ability to parse and validate markdown elements. These
functions provide a standard way of creating the reports that are for the user based on whether or
not they are on the CLI or on GitHub. The prerequisites of these functions are the input data frame
(generated from the actual validation function) and an internal set of known templating vectors that
contain templates for each test to show the actual error along with general information that can help

correct the error (see below).

Input Data Frame:
The validations are initially reported in a data frame that has the following properties:

* one row per element

 columns that indicate the parsed attributes of the element, source file, source position, and
the actual element XML node object.

¢ boolean columns that indicate the tests for each element, used with collect_labels() to
add a "labels" column to the data.

Templating vectors:

These vectors come in two forms [thing]_tests and [thing]_info (e.g. for validate_links(),
we have 1link_tests and link_info). These are named vectors that match the boolean columns
of the data frame produced by the validation function. The [thing]_tests vector contains tem-
plates that describes the error and shows the text that caused the error. The [thing]_info contains
general information about how to address that particular error. For example, one common link er-
ror is that a link is not descriptive (e.g. the link text says "click here"). The column in the VAL data
frame that contains the result of this test is called "descriptive", so if we look at the values from
the link info and tests vectors:

trim_fence 37

link_info["descriptive”]

#> descriptive

#> "Avoid uninformative link phrases <https://webaim.org/techniques/hypertext/link_text#uninformati
link_tests["descriptive”]

#> descriptive

#> "[uninformative link text]: [{text}]({orig})"

If the throw_*_warnings() functions detect any errors, they will use the info and tests vectors to
construct a composite message.

Process:
The throw_*_warnings() functions all do the same basic procedure (and indeed could be con-
solidated into a single function in the future)
1. pass datato collect_labels(), which will parse the [thing]_tests templating vector and
label each failing element in VAL with the appropriate failure message
2. gather the source information for each failure
3. pass failures with the [thing]_info elements that matched the unique failures to issue_warning()

Value

NULL, invisibly. This is used for it’s side-effect of formatting and issuing messages via issue_warning().

See Also
validate_links(), validate_divs(), and validate_headings() for input sources for these
functions.
trim_fence Trim div fences from output
Description

Trim div fences from output

Usage

trim_fence(nodes)

Arguments

nodes an xml_nodeset whose first and last node are div fences

Value

the nodeset without div fences

38 validate_divs

validate_divs Validate Callout Blocks for sandpaper episodes

Description

The Carpentries Workbench uses pandoc fenced divs to create special blocks within the lesson for
learners and instructors to provide breaks in the narrative flow for focus on specific tasks or caveats.
These fenced divs look something like this:

Usage
validate_divs(yrn)
div_is_known(div_table)
KNOWN_DIVS
div_tests
div_info

Arguments

yrn a tinkr::yarn or Episode object.

div_table a data frame derived from make_div_table()

Format

An object of class character of length 13.
An object of class character of length 1.

An object of class character of length 1.
Details
:: callout
#i## Hello!

This is a callout block

Lessons created with The Carpentries Workbench are expected to have the following fenced divs:

* objectives (top)
* questions (top)

* keypoints (bottom)

https://pandoc.org/MANUAL.html#extension-fenced_divs

validate_divs 39

The following fenced divs can occur in the lesson, but are not required:

* prereq

* callout

* challenge

* solution (nested inside challenge)

* hint (nested inside challenge)

* discussion

e checklist

* testimonial

* tab (can only contain text, images, and code blocks)

Any other div names will produce structure in the resulting DOM, but they will not have any special
visual styling.

Value

a data frame with the following columns:

* div: the type of div
e label: the label of the div
e line: the line number of the div label

* is_known: a logical value if the div is a known type (TRUE) or not (FALSE)

Index

x datasets
validate_divs, 38

append_labels (issue_warning), 22

collect_labels, 2
collect_labels(), 36, 37

div_info (validate_divs), 38
div_is_known (validate_divs), 38
div_tests (validate_divs), 38

Episode, 3, 19, 24, 26, 27, 29, 30, 34, 38
Episode$new, 26
Episode$new(), 20

fix_liquid_relative_link, 15
fix_sandpaper_links, 16

gert::git_clone(), 20
get_blocks, 17
get_challenges, 18
get_code, 19
get_headings, 19
get_lesson, 20
get_solutions, 21
gettext, 23

isolate_elements, 22
issue_warning, 22
issue_warning(), 37

KNOWN_DIVS (validate_divs), 38

Lesson, 24

lesson_fragment, 32
line_report (issue_warning), 22
liquid_to_commonmark, 33

make_div_table, 34
make_div_table(), 38

40

make_pandoc_alt, 35
message(), 23
message_muffler (issue_warning), 22

pb_message (issue_warning), 22
process_images(), 7

set_alt_attr, 35
show_heading_tree (get_headings), 19
stop, 23

throw_div_warnings
(throw_heading_warnings), 36
throw_heading_warnings, 36
throw_link_warnings
(throw_heading_warnings), 36
throw_link_warnings(), 2
tinkr::to_xml(), 5, 20
tinkr::yarn, 3, 5, 34, 38
tinkr::yarn(), 3
trim_fence, 37

validate_divs, 38
validate_divs(), 12, 29, 37
validate_headings(), 12, 20, 28, 29, 37
validate_links(), 12, 29, 36, 37

	collect_labels
	Episode
	fix_liquid_relative_link
	fix_sandpaper_links
	get_blocks
	get_challenges
	get_code
	get_headings
	get_lesson
	get_solutions
	isolate_elements
	issue_warning
	Lesson
	lesson_fragment
	liquid_to_commonmark
	make_div_table
	make_pandoc_alt
	set_alt_attr
	throw_heading_warnings
	trim_fence
	validate_divs
	Index

