
Package: sandpaper (via r-universe)
September 4, 2024

Title Create and Curate Carpentries Lessons

Version 0.16.7

Description We provide tools to build a Carpentries-themed lesson
repository into an accessible standalone static website. These
include local tools and those designed to be used in a
continuous integration context so that all the lesson author
needs to focus on is writing the content of the actual lesson.

License MIT + file LICENSE

Imports pkgdown (>= 1.6.0), pegboard (>= 0.7.0), cli (>= 3.4.0),
commonmark, fs (>= 1.5.0), gh, gert (>= 1.0.1), rstudioapi,
rlang (>= 0.4.3), glue, assertthat, yaml, desc, knitr (>=
1.33), rmarkdown (>= 2.4), renv (>= 0.14.0), rprojroot, usethis
(>= 2.0.0), withr, whisker, callr, servr, utils, tools

Suggests testthat (>= 3.0.0), covr, markdown, brio, xml2, xslt,
jsonlite, sessioninfo, mockr, varnish (>= 0.3.0)

Additional_repositories https://carpentries.r-universe.dev/

Remotes carpentries/pegboard, carpentries/varnish

SystemRequirements pandoc (>= 2.11.4) - https://pandoc.org

Encoding UTF-8

LazyData true

Config/testthat/edition 3

Config/testthat/parallel false

Config/Needs/check rstudio/renv

Config/potools/style explicit

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

URL https://carpentries.github.io/sandpaper/,

https://github.com/carpentries/sandpaper/,

https://carpentries.github.io/workbench/

1

https://carpentries.r-universe.dev/
https://carpentries.github.io/sandpaper/
https://github.com/carpentries/sandpaper/
https://carpentries.github.io/workbench/

2 build_handout

BugReports https://github.com/carpentries/sandpaper/issues/

VignetteBuilder knitr

Repository https://carpentries.r-universe.dev

RemoteUrl https://github.com/carpentries/sandpaper

RemoteRef 0.16.7

RemoteSha d566e2dd87540195e1b4e856f82ace8ad975346c

Contents
build_handout . 2
build_lesson . 3
create_episode . 4
create_lesson . 6
get_config . 7
get_drafts . 7
get_dropdown . 8
known_languages . 9
manage_deps . 10
move_episode . 12
reset_episodes . 13
reset_site . 14
sandpaper.options . 14
serve . 15
set_config . 16
set_dropdown . 18
strip_prefix . 19
update_github_workflows . 20
update_varnish . 21
use_package_cache . 22

Index 24

build_handout Create a code handout of challenges without solutions

Description

This function will build a handout and save it to files/code-handout.R in your lesson website.
This will build with your website if you enable it with options(sandpaper.handout = TRUE) or if
you want to specify a path, you can use options(sandpaper.handout = "/path/to/handout.R")
to save the handout to a specific path.

Usage

build_handout(path = ".", out = NULL)

https://github.com/carpentries/sandpaper/issues/

build_lesson 3

Arguments

path the path to the lesson. Defaults to current working directory

out the path to the handout document. When this is NULL (default) or TRUE, the
output will be site/built/files/code-handout.R.

build_lesson Build your lesson site

Description

This function orchestrates rendering generated lesson content and applying the theme for the HTML
site.

Usage

build_lesson(
path = ".",
rebuild = FALSE,
quiet = !interactive(),
preview = TRUE,
override = list()

)

Arguments

path the path to your repository (defaults to your current working directory)

rebuild if TRUE, everything will be built from scratch as if there was no cache. Defaults
to FALSE, which will only build markdown files that haven’t been built before.

quiet when TRUE, output is supressed

preview if TRUE, the rendered website is opened in a new window

override options to override (e.g. building to alternative paths). This is used internally
and will likely be changed.

Details

Structure of a Workbench Lesson:
A Carpentries Workbench lesson is comprised of a set of markdown files and folders:

+-- config.yaml
+-- index.md
+-- episodes
| +-- data
| +-- fig
| +-- files
| \-- introduction.Rmd

4 create_episode

+-- instructors
| \-- instructor-notes.md
+-- learners
| \-- setup.md
+-- profiles
| \-- learner-profiles.md
+-- links.md
+-- site

\-- [...]
+-- renv
| \-- [...]
+-- CODE_OF_CONDUCT.md
+-- CONTRIBUTING.md
+-- LICENSE.md
\-- README.md

Value

TRUE if it was successful, a character vector of issues if it was unsuccessful.

See Also

serve(): an interactive way to build and edit lesson content.

Examples

tmp <- tempfile()
create_lesson(tmp, open = FALSE, rmd = FALSE)
create_episode("first-script", path = tmp, open = FALSE)
check_lesson(tmp)
build_lesson(tmp)

create_episode Create an Episode from a template

Description

These functions allow you to create an episode that will be added to the schedule.

Usage

create_episode(
title,
ext = "Rmd",
make_prefix = FALSE,
add = TRUE,

create_episode 5

path = ".",
open = rlang::is_interactive()

)

create_episode_md(
title,
make_prefix = FALSE,
add = TRUE,
path = ".",
open = rlang::is_interactive()

)

create_episode_rmd(
title,
make_prefix = FALSE,
add = TRUE,
path = ".",
open = rlang::is_interactive()

)

draft_episode_md(
title,
make_prefix = FALSE,
path = ".",
open = rlang::is_interactive()

)

draft_episode_rmd(
title,
make_prefix = FALSE,
path = ".",
open = rlang::is_interactive()

)

Arguments

title the title of the episode

ext a character. If ext = "Rmd" (default), then the new episode will be an R Mark-
down episode. If ext = "md", then the new episode will be a markdown episode,
which can not generate dynamic content.

make_prefix a logical. When TRUE, the prefix for the file will be automatically determined by
the files already present. When FALSE (default), it assumes no prefix is needed.

add (logical or numeric) If numeric, it represents the position the episode should be
added. If TRUE, the episode is added to the end of the schedule. If FALSE, the
episode is added as a draft episode.

path the path to the sandpaper lesson.

open if interactive, the episode will open in a new editor window.

6 create_lesson

Examples

tmp <- tempfile()
create_lesson(tmp, open = FALSE, rmd = FALSE)
create_episode_md("getting-started", path = tmp)

create_lesson Create a carpentries lesson

Description

This will create a boilerplate directory structure for a Carpentries lesson and initialize a git reposi-
tory.

Usage

create_lesson(
path,
name = fs::path_file(path),
rmd = TRUE,
rstudio = rstudioapi::isAvailable(),
open = rlang::is_interactive()

)

Arguments

path the path to the new lesson folder

name the name of the lesson. If not provided, the folder name will be used.

rmd logical indicator if the lesson should use R Markdown (TRUE, default), or if
it should use Markdown (FALSE). Note that lessons can be converted to use R
Markdown at any time by adding a file with the .Rmd file extension in the lesson.

rstudio create an RStudio project (defaults to if RStudio exits)

open if interactive, the lesson will open in a new editor window.

Value

the path to the new lesson

Examples

tmp <- tempfile()
on.exit(unlink(tmp))
lsn <- create_lesson(tmp, name = "This Lesson", open = FALSE)
lsn

get_config 7

get_config Get the configuration parameters for the lesson

Description

Get the configuration parameters for the lesson

Usage

get_config(path = ".")

Arguments

path path to the lesson

Value

a yaml list

Examples

tmp <- tempfile()
create_lesson(tmp, open = FALSE, rmd = FALSE)
get_config(tmp)

get_drafts Show files in draft form

Description

By default, sandpaper will use the files in alphabetical order as they are presented in the folders,
however, it is strongly for authors to specify the order of the files in their lessons, so that it’s easy
to rearrange or add, split, or rearrange files.

Usage

get_drafts(
path,
folder = NULL,
message = getOption("sandpaper.show_draft", TRUE)

)

8 get_dropdown

Arguments

path path to the the sandpaper lesson

folder the specific folder for which to list the draft files. Defaults to NULL, which indi-
cates all folders listed in config.yaml.

message if TRUE (default), an informative message about the files that are in draft status
are printed to the screen.

Details

This mechanism also allows authors to work on files in a draft form without them being published.
This function will list and show the files in draft for automation and audit.

Value

a vector of paths to files in draft and a message (if specified)

get_dropdown Helpers to extract contents of dropdown menus on the site

Description

This fuction will extract the resources that exist and are listed in the config file.

Usage

get_dropdown(path = ".", folder, trim = TRUE)

get_episodes(path = ".", trim = TRUE)

get_learners(path = ".", trim = TRUE)

get_instructors(path = ".", trim = TRUE)

get_profiles(path = ".", trim = TRUE)

Arguments

path the path to the lesson, defaults to the current working directory

folder the folder to extract fromt he dropdown menues

trim if TRUE (default), only the file name will be presented. When FALSE, the full
path will be prepended.

Value

a character vector of episodes in order of presentation

known_languages 9

Examples

tmp <- tempfile()
create_lesson(tmp, open = FALSE, rmd = FALSE)
get_episodes(tmp)
get_learners(tmp) # information for learners

known_languages Show a list of languages known by sandpaper

Description

Show a list of languages known by sandpaper

Usage

known_languages()

Details

The known languages are translations of menu and navigational elements that exist in sandpaper. If
these elements have not been translated for a given language and you would like to add translations
for them, please consult vignette("translations", package = "sandpaper") for details of how
to do so in the source code for sandpaper.

List of Known Languages::

#> - en
#> - es
#> - ja
#> - uk

Value

a character vector of language codes known by sandpaper

See Also

vignette("translations", package = "sandpaper") for an overview of providing translations.

Examples

known_languages()

10 manage_deps

manage_deps Lesson Runtime Dependency Management

Description

A customized provisioner for Carpentries Lessons based on renv that will install and maintain
the requirements for the lesson while respecting user environments. This setup leads to several
advantages:

• reliable setup: the version of the lesson built on the carpentries website will be the same as
what you build on your computer because the packages will be identical

• environmentally friendly: The lesson dependencies are NOT stored in your default R library
and they will not alter your R environment.

• transparent: any additions or deletions to the cache will be recorded in the lockfile, which is
tracked by git.

The functions that control this cache are the following:

1. manage_deps(): Creates and updates the dependencies in your lesson. If no lockfile exists in
your lesson, this will create one for you.

2. update_cache(): fetches updates for the dependencies and applies them to your cache and
lockfile.

This is a wrapper around renv::record(), which helps you record a package or set of packages in
your lockfile. It can be useful when you want to upgrade or downgrade a specific package.

Usage

manage_deps(
path = ".",
profile = "lesson-requirements",
snapshot = TRUE,
quiet = FALSE

)

update_cache(
path = ".",
profile = "lesson-requirements",
prompt = interactive(),
quiet = !prompt,
snapshot = TRUE

)

pin_version(records = NULL, profile = "lesson-requirements", path = ".")

manage_deps 11

Arguments

path path to your lesson. Defaults to the current working directory.

profile default to the profile for the lesson. Defaults to lesson-requirements. Only
use this if you know what you are doing.

snapshot if TRUE, packages from the cache are added to the lockfile (default). Setting this
to FALSE will add packages to the cache and not snapshot them.

quiet if TRUE, output will be suppressed, defaults to FALSE, providing output about
different steps in the process of updating the local dependencies.

prompt if TRUE, a message will show you the packages that will be updated in your
lockfile and ask for your permission. This is the default if it’s running in an
interactive session.

records a character vector or list of packages/resources to include in the lockfile. The
most common way to do this is to use the [package]@[version] syntax (e.g.
gert@0.1.3), but there are other specifications where you can specify the re-
mote repository. See renv::record() for details.

Details

The renv package provides a very useful interface to bring one aspect of reproducibility to R
projects. Because people working on Carpentries lessons are also working academics and will
likely have projects on their computer where the package versions are necessary for their work, it’s
important that those environments are respected.

Our flavor of renv applies a package cache explicitly to the content of the lesson, but does not
impose itself as the default renv environment.

This provisioner will do the following steps:

1. check for consent to use the package cache via use_package_cache() and prompt for it if
needed

2. check if the profile has been created and create it if needed via renv::init()

3. populate the cache with packages needed from the user’s system and download any that are
missing via renv::hydrate(). This includes all new packages that have been added to the
lesson.

4. If there is a lockfile already present, make sure the packages in the cache are aligned with the
lockfile (downloading sources if needed) via renv::restore().

5. Record the state of the cache in a lockfile tracked by git. This will include adding new pack-
ages and removing old packages. renv::snapshot()

When the lockfile changes, you will see it in git and have the power to either commit or restore
those changes.

Value

if snapshot = TRUE, a nested list representing the lockfile will be returned.

the contents of the lockfile, invisibly

12 move_episode

See Also

use_package_cache() and no_package_cache() for turning on and off the package cache, re-
spectively.

move_episode Move an episode in the schedule

Description

If you need to move a single episode, this function gives you a programmatic or interactive interface
to accomplishing this task, whether you need to add and episode, draft, or remove an episode from
the schedule.

Usage

move_episode(ep = NULL, position = NULL, write = FALSE, path = ".")

Arguments

ep the name of a draft episode or the name/number of a published episode to move.

position the position in the schedule to move the episode. Valid positions are from 0 to
the number of episodes (+1 for drafts). A value of 0 indicates that the episode
should be removed from the schedule.

write defaults to FALSE, which will show the potential changes. If TRUE, the schedule
will be modified and written to config.yaml

path the path to the lesson (defaults to the current working directory)

See Also

create_episode(), set_episodes(), get_drafts(), get_episodes()

Examples

if (interactive() || Sys.getenv("CI") != "") {
tmp <- tempfile()
create_lesson(tmp)
create_episode_md("getting-started", path = tmp, open = FALSE)
create_episode_rmd("plotting", path = tmp, open = FALSE)
create_episode_md("experimental", path = tmp, add = FALSE, open = FALSE)
set_episodes(tmp, c("getting-started.md", "introduction.Rmd", "plotting.Rmd"),
write = TRUE)

Default episode order is alphabetical, we can use this to nudge episodes
get_episodes(tmp)
move_episode("introduction.Rmd", 1L, path = tmp) # by default, it shows you the change
move_episode("introduction.Rmd", 1L, write = TRUE, path = tmp) # write the results
get_episodes(tmp)

reset_episodes 13

Add episodes from the drafts
get_drafts(tmp)
move_episode("experimental.md", 2L, path = tmp) # view where it will live
move_episode("experimental.md", 2L, write = TRUE, path = tmp)
get_episodes(tmp)

Unpublish episodes by setting position to zero
move_episode("experimental.md", 0L, path = tmp) # view the results
move_episode("experimental.md", 0L, write = TRUE, path = tmp)
get_episodes(tmp)

Interactively select the position where the episode should go by omitting
the position argument
if (interactive()) {

move_episode("experimental.md", path = tmp)
}

}

reset_episodes Clear the schedule in the lesson

Description

Clear the schedule in the lesson

Usage

reset_episodes(path = ".")

Arguments

path path to the lesson

Value

NULL, invisibly

Examples

tmp <- tempfile()
create_lesson(tmp, open = FALSE, rmd = FALSE)
get_episodes(tmp) # produces warning
set_episodes(tmp, get_episodes(tmp), write = TRUE)
get_episodes(tmp) # no warning
reset_episodes(tmp)
get_episodes(tmp) # produces warning again because there is no schedule

14 sandpaper.options

reset_site Remove all files associated with the site

Description

Use this if you want to rebuild your site from scratch.

Usage

reset_site(path = ".")

Arguments

path the path to the site

Examples

tmp <- tempfile()
create_lesson(tmp, open = FALSE, rmd = FALSE)
build_lesson(tmp, preview = FALSE)
dir(file.path(tmp, "site"))
reset_site(tmp)
dir(file.path(tmp, "site"))

sandpaper.options Global Options

Description

this is some documentation about options

Details

option("sandpaper.show_draft" = TRUE)
option("sandpaper.links" = NULL)
option("sandpaper.use_renv" = FALSE)
option("sandpaper.package_cache_trigger" = FALSE)
option("sandpaper.test_fixture" = NULL)

As of 2022-02-22, there are several options that are used in sandpaper that may be manipulated by
the user. This set may change in the future, but here are the description of these options and how
they are set on startup:

sandpaper.show_draft:
Default: TRUE This is for user messages. If TRUE, a message about episodes in draft status (i.e.
episodes that are in the folder, but not in the schedule) will be printed with get_drafts(). Setting
this option to FALSE will turn off this feature.

serve 15

sandpaper.links:
Default: NULL This option provides a way to override the default place for links in your sandpaper
lesson. If it is NULL and there is a file called links.md at the top of the repository, this will be
appended to the bottom of each page before it is rendered to HTML.

sandpaper.use_renv:
Default: variable This option should not be modified by the user. It determines if renv should be
used locally for R-based lessons. It is set by use_package_cache() and unset by no_package_cache().
If a local user has never consented to using renv previously, then it defaults to FALSE, but if renv
has previously been used, it will be TRUE.

sandpaper.package_cache_trigger:
Default: FALSE locally/TRUE on GitHub this tells R Markdown lessons to rebuild everything
if the renv lockfile changes.

sandpaper.test_fixture:
Default: NULL This is ONLY for internal use for testing interactive components non-interactively
and for setting renv to behave correctly while testing.

serve Build your lesson and work on it at the same time

Description

This function will serve your lesson and it will auto-update whenever you save a file.

Usage

serve(path = ".", quiet = !interactive(), ...)

Arguments

path the path to your lesson. Defaults to the current path.

quiet if TRUE, then no messages are printed to the output. Defaults to FALSE in non-
interactive sessions, which allows messages to be printed.

... options passed on to servr::server_config() by way of servr::httw().
These can include port and host configuration.

Details

sandpaper::serve() is an entry point to working on any lesson using The Carpentries Workbench.
When you run this function interactively, a preview window will open either in RStudio or your
browser with an address like localhost:4321 (note the number will likely be different). When
you make changes to files in your lesson, this preview will update automatically.

When you are done with the preview, you can run servr::daemon_stop().

16 set_config

Command line usage:
You can use this on the command line if you do not use RStudio or another IDE that acts as a web
browser. To run this on the command line, use:

R -e 'sandpaper::serve()'

Note that unlike an interactive session, progress messages are not printed (except for the ac-
cessibility checks) and the browser window will not automatically launch. You can have these
messages print to screen with the quiet = FALSE argument. In addition, If you want to specify a
port and host for this function, you can do so using the port and host arguments:

R -e 'sandpaper::serve(quiet = FALSE, host = "127.0.0.1", port = "3435")'

Value

the output of servr::httw(), invisibly. This is mainly used for its side-effect

See Also

build_lesson(), render the lesson once, locally.

Examples

if (FALSE) {
create an example lesson
tmp <- tempfile()
create_lesson(tmp, open = FALSE)

open the episode for editing
file.edit(fs::path(tmp, "episodes", "01-introduction.Rmd"))

serve the lesson and begin editing the file. Watch how the file will
auto-update whenever you save it.
sandpaper::serve()
#
to stop the server, run
servr::daemon_stop()
#
If you want to use a different port, you can specify it directly
sandpaper::serve(host = "127.0.0.1", port = "3435")

}

set_config Set individual keys in a configuration file

Description

Set individual keys in a configuration file

set_config 17

Usage

set_config(pairs = NULL, create = FALSE, path = ".", write = FALSE)

Arguments

pairs a named list or character vector with keys as the names and the new values as
the contents

create if TRUE, any new values in pairs will be created and appended; defaults to
FALSE, which prevents typos from sneaking in. single key-pair values currently
supported.

path path to the lesson. Defaults to the current directory.

write if TRUE, the schedule will overwrite the schedule in the current file.

Details

This function deals strictly with keypairs in the yaml. For lists, see set_dropdown().

Default Keypairs Known by Sandpaper:
When you create a new lesson in sandpaper, there are a set of default keypairs that are pre-filled.
To make sure contact information and links in the footer are accurate, please modify these values.

• carpentry [character] one of cp, dc, swc, lab, incubator
• title [character] the lesson title (e.g. 'Introduction to R for Plant Pathologists'

• created [character] Date in ISO 8601 format (e.g. '2021-02-09')
• keywords [character] comma-separated list (e.g 'static site, R, tidyverse')
• life_cycle [character] one of pre-alpha, alpha, beta, stable
• license [character] a license for the lesson (e.g. 'CC-BY 4.0')
• source [character] the source repository URL
• branch [character] the default branch (e.g. 'main')
• contact [character] an email address of who to contact for more information about the

lesson

Optional Keypairs Known by Sandpaper:
The following keypairs are known by sandpaper, but are optional:

• lang [character] the language code that matches the language of the lesson content. This
defaults to "en", but can be any language code (e.g. "ja" specifying Japanese) or combination
language code and country code (e.g. "pt_BR" specifies Pourtugese used in Brazil). For more
information on how this is used, see the Locale Names section of the gettext manual

• url [character] custom URL if you are deploying to a URL that is not the default github
pages io domain.

• fail_on_error [boolean] for R Markdown lessons; fail the build if any chunks produce an
error. Use #| error: true in chunk options to allow the error to be displayed

• workbench-beta [boolean] if truthy, this displays a banner on the site that indicates the site
is in the workbench beta phase.

• overview [boolean] All lessons must have episodes with the exception of overview lessons.
To indicate that your lesson serves as an overview for other lessons, use overview: true

https://www.gnu.org/software/gettext/manual/html_node/Usual-Language-Codes.html
https://www.gnu.org/software/gettext/manual/html_node/Country-Codes.html
https://www.gnu.org/software/gettext/manual/html_node/Locale-Names.html

18 set_dropdown

• handout [boolean] or [character] This option instructs sandpaper to create a handout
of all RMarkdown files via pegboard, which uses knitr::purl() in the background after
removing everything but the challenges (without solutions) and any code blocks where purl
= TRUE. The default path for the handout is files/code-handout.R

As the workbench becomes more developed, some of these optional keys may disappear.

Custom Engines:
To use a specific version of sandpaper or varnish locally, you would install them using remotes::install_github("carpentries/sandpaper@VERSION")
syntax, but to provision these versions on GitHub, you can provision these in the config.yaml
file:

• sandpaper [character] github string or version number of sandpaper version to use
• varnish [character] github string or version number of varnish version to use
• pegboard [character] github string or version number of pegboard version to use

For example, if you had forked your own version of varnish to modify the colourscheme, you
could use:

varnish: MYACCOUNT/varnish

If there is a specific branch of sandpaper or varnish that is being tested, and you want to test it
on your lesson temporarily, you could use the @ symbol to refer to the specific branch or commit
to use:

sandpaper: carpentries/sandpaper@BRANCH-NAME
varnish: carpentries/varnish@BRANCH-name

Examples

if (FALSE) {
tmp <- tempfile()
create_lesson(tmp, "test lesson", open = FALSE, rmd = FALSE)
Change the title and License (default vars)
set_config(c(title = "Absolutely Free Lesson", license = "CC0"),
path = tmp,
write = TRUE

)

add the URL and workbench-beta indicator
set_config(list("workbench-beta" = TRUE, url = "https://example.com/"),

path = tmp,
create = TRUE,
write = TRUE

)
}

set_dropdown Set the order of items in a dropdown menu

Description

Set the order of items in a dropdown menu

strip_prefix 19

Usage

set_dropdown(path = ".", order = NULL, write = FALSE, folder)

set_episodes(path = ".", order = NULL, write = FALSE)

set_learners(path = ".", order = NULL, write = FALSE)

set_instructors(path = ".", order = NULL, write = FALSE)

set_profiles(path = ".", order = NULL, write = FALSE)

Arguments

path path to the lesson. Defaults to the current directory.

order the files in the order presented (with extension)

write if TRUE, the schedule will overwrite the schedule in the current file.

folder one of four folders that sandpaper recognises where the files listed in order are
located: episodes, learners, instructors, profiles.

Examples

tmp <- tempfile()
create_lesson(tmp, "test lesson", open = FALSE, rmd = FALSE)
Change the title and License
set_config(c(title = "Absolutely Free Lesson", license = "CC0"),

path = tmp,
write = TRUE

)
create_episode("using-R", path = tmp, open = FALSE)
print(sched <- get_episodes(tmp))

reverse the schedule
set_episodes(tmp, order = rev(sched))
write it
set_episodes(tmp, order = rev(sched), write = TRUE)

see it
get_episodes(tmp)

strip_prefix This will strip existing episode prefixes and set the schedule

Description

Episode order for Carpentries lessons originally used a strategy of prefixing files by a two-digit
number to force a specific order by filename. This function will strip these numbers from the
filename and set the schedule according to the original order.

20 update_github_workflows

Usage

strip_prefix(path = ".", write = FALSE)

Arguments

path the path to the lesson (defaults to the current working directory)

write defaults to FALSE, which will show the potential changes. If TRUE, the schedule
will be modified and written to config.yaml

Value

when write = TRUE, the modified list of episodes. When write = FALSE, the modified call is re-
turned.

Note

git will recognise this as deleting a file and then adding a new file in the stage. If you run git add,
it should recognise that it is a rename.

See Also

create_episode() for creating new episodes, move_episode() for moving individual episodes
around.

Examples

if (FALSE) {
strip_prefix() # test if the function is doing what you want it to do
strip_prefix(write = TRUE) # rewrite the episode names

}

update_github_workflows

Update github workflows

Description

This function copies and updates the workflows to run sandpaper.

Usage

update_github_workflows(
path = ".",
files = "",
overwrite = TRUE,
clean = "*.yaml",
quiet = FALSE

)

update_varnish 21

Arguments

path path to the current lesson.

files the files to include in the update. Defaults to an empty string, which will update
all files

overwrite if TRUE (default), the file(s) will be overwritten.

clean glob of files to be cleaned before writing. Defaults to "*.yaml". to remove
all files with the four-letter "yaml" extension (but it will not remove the ".yml"
extension). You can also specify a whole file name like "workflow.yaml" to
remove one specific file. If you do not want to clean, set this to NULL.

quiet if TRUE, the process will not output any messages, default is FALSE, which will
report on the progress of each step.

Value

the paths to the new files.

update_varnish Update the local version of the carpentries style

Description

Update the local version of the carpentries style

Usage

update_varnish(version = NULL, ...)

Arguments

version if NULL, update the latest version, otherwise, this can be a version string to
identify the specific version to use.

... arguments passed on to utils::install.packages()

Value

NULL, invisibly

Note

this requires an internet connection

22 use_package_cache

use_package_cache Give Consent to Use Package Cache

Description

These functions explicitly gives sandpaper permission to use renv to create a package cache for
this and future lessons. There are two states that you can use:

1. use_package_cache(): Gives explicit permission to set up and use the package cache with
your lesson.

2. no_package_cache(): Temporarily suspends permission to use the package cache with your
lesson, regardless if it was previously given.

Once you have a package cache defined, you can use changes in the lockfile to trigger rebuilds of
the lesson. To do this, you can use:

• package_cache_trigger(TRUE)

The above function is best used in conjunction with update_cache()

Usage

use_package_cache(prompt = interactive(), quiet = !prompt)

no_package_cache()

package_cache_trigger(rebuild = NULL)

Arguments

prompt if TRUE (default when interactive), a prompt for consent giving information about
the proposed modifications will appear on the screen asking for the user to
choose to apply the changes or not.

quiet if TRUE, messages will not be issued unless prompt = TRUE. This defaults to the
opposite of prompt.

rebuild The new value of the sandpaper.package_cache_trigger global option. Set-
ting this to TRUE will result in all materials being rebuilt when new records enter
the package cache lockfile even if no source files have changed. Setting this to
FALSE will return this to the default state, which is to rebuld only if the source
files have changed. The default is NULL, which does nothing.

Details

Background:
By default, sandpaper will happily build your lesson using the packages available in your default
R library, but this can be undesirable for a couple of reasons:

use_package_cache 23

1. You may have a different version of a lesson package that is used on the lesson website,
which may result in strange errors, warnings, or incorrect output.

2. You might be very cautious about updating any components of your current R infrastructure
because your work depends on you having the correct package versions installed.

To alleviate these concerns, sandpaper uses the renv package to generate a lesson-specific library
that has package versions pinned until the lesson authors choose to update them. This is designed
to be minimally-invasive, using the packages you already have and downloading from external
repositories only when necessary.

What if I have used renv before?:
If you have used renv in the past, then there is no need to give consent to use the cache.

How do I turn off the feature temporarily?:
To turn off the feature you can use no_package_cache(). sandpaper will respect this option
when building your lesson and will use your global library instead.

I have used renv before; how do I turn it off before sandpaper loads?:
You can set options(sandpaper.use_renv = FALSE) before loading sandpaper.

Value

nothing. this is used for its side-effect

the value of getOption("sandpaper.package_cache_trigger") or FALSE, if it is unset.

See Also

manage_deps() and update_cache() for managing the requirements inside the package cache.

Examples

if (!getOption("sandpaper.use_renv") && interactive()) {
The first time you set up {renv}, you will need permission
use_package_cache(prompt = TRUE)
The package cache trigger is FALSE, by default
default <- package_cache_trigger()
You can set this to `TRUE` when you update packages with `update_cache()`
package_cache_trigger(TRUE)
set the trigger back to its former state
package_cache_trigger(default)

}

if (getOption("sandpaper.use_renv") && interactive()) {
If you have previously used {renv}, permission is implied
use_package_cache(prompt = TRUE)

You can temporarily turn this off
no_package_cache()
getOption("sandpaper.use_renv") # should be FALSE
use_package_cache(prompt = TRUE)

}

Index

build_handout, 2
build_lesson, 3
build_lesson(), 16

create_episode, 4
create_episode(), 12, 20
create_episode_md (create_episode), 4
create_episode_rmd (create_episode), 4
create_lesson, 6

draft_episode_md (create_episode), 4
draft_episode_rmd (create_episode), 4

get_config, 7
get_drafts, 7
get_drafts(), 12
get_dropdown, 8
get_episodes (get_dropdown), 8
get_episodes(), 12
get_instructors (get_dropdown), 8
get_learners (get_dropdown), 8
get_profiles (get_dropdown), 8

knitr::purl(), 18
known_languages, 9

manage_deps, 10
manage_deps(), 23
move_episode, 12
move_episode(), 20

no_package_cache (use_package_cache), 22
no_package_cache(), 12, 15

package_cache_trigger
(use_package_cache), 22

pin_version (manage_deps), 10

renv::hydrate(), 11
renv::init(), 11
renv::record(), 10, 11

renv::restore(), 11
renv::snapshot(), 11
reset_episodes, 13
reset_site, 14

sandpaper.options, 14
serve, 15
serve(), 4
servr::httw(), 15, 16
servr::server_config(), 15
set_config, 16
set_dropdown, 18
set_dropdown(), 17
set_episodes (set_dropdown), 18
set_episodes(), 12
set_instructors (set_dropdown), 18
set_learners (set_dropdown), 18
set_profiles (set_dropdown), 18
strip_prefix, 19

update_cache (manage_deps), 10
update_cache(), 22, 23
update_github_workflows, 20
update_varnish, 21
use_package_cache, 22
use_package_cache(), 11, 12, 15
utils::install.packages(), 21

24

	build_handout
	build_lesson
	create_episode
	create_lesson
	get_config
	get_drafts
	get_dropdown
	known_languages
	manage_deps
	move_episode
	reset_episodes
	reset_site
	sandpaper.options
	serve
	set_config
	set_dropdown
	strip_prefix
	update_github_workflows
	update_varnish
	use_package_cache
	Index

